Embedding rings in completed graded rings 1. Triangular embeddings
نویسندگان
چکیده
منابع مشابه
Semisimple Strongly Graded Rings
Let G be a finite group and R a strongly G-graded ring. The question of when R is semisimple (meaning in this paper semisimple artinian) has been studied by several authors. The most classical result is Maschke’s Theorem for group rings. For crossed products over fields there is a satisfactory answer given by Aljadeff and Robinson [3]. Another partial answer for skew group rings was given by Al...
متن کاملGraded Rings and Modules
1 Definitions Definition 1. A graded ring is a ring S together with a set of subgroups Sd, d ≥ 0 such that S = ⊕ d≥0 Sd as an abelian group, and st ∈ Sd+e for all s ∈ Sd, t ∈ Se. One can prove that 1 ∈ S0 and if S is a domain then any unit of S also belongs to S0. A homogenous ideal of S is an ideal a with the property that for any f ∈ a we also have fd ∈ a for all d ≥ 0. A morphism of graded r...
متن کاملTight Closure in Graded Rings
This paper facilitates the computation of tight closure by giving giving upper and lower bounds on the degrees of elements that need to be checked for inclusion in the tight closure of certain homogeneous ideals in a graded ring. Differential operators are introduced to the study of tight closure, and used to prove that the degree of any element in the tight closure of a homogeneous ideal (but ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1983
ISSN: 0021-8693
DOI: 10.1016/0021-8693(83)90065-0